李宏伟
职 称:副教授 硕士生导师
办公室:长清湖校区文渊楼A265
邮 箱:hwli@sdnu.edu.cn
研究方向:偏微分方程数值解、科学工程计算
个人简介
李宏伟,男,中共党员,1984年生,数学博士,副教授,硕士生导师。近年来致力于偏微分方程在无界区域上的数值解法和相场模型数值解的研究,获得一批应用基础性研究成果。在J. Sci. Comput., Phys. Review E, Comput. Phys. Commun. 等国际权威期刊发表 SCI收录论文数篇。先后主持国家自然科学基金2项,山东省自然科学基金1项。
研究兴趣
人工边界条件;相场模型
招生方向
硕士研究生招生专业:偏微分方程数值解法;科学工程计算
开设课程
数值分析;数学建模;高等数学
科研项目
1.山东省自然科学基金:无界区域上耦合非线性Schrödinger方程组的高效数值解法(2019.07-2021.06) 主持
2.国家自然科学基金青年项目:无界区域上带波动算子的非线性Schrödinger方程基于人工边界方法的数值解法 (2015.01-2017.12) 主持
3.国家自然科学基金天元基金:无界区域上带波动算子的非线性薛定谔方程的局部吸收边界条件 (2014.01-2014.12) 主持
学术兼职
Mathematical Reviewer
奖励与荣誉
山东省高等学校科学技术奖二等奖(3/4),2018,山东省教育厅
代表性成果
1. Hongwei Li, Xin Zhao, Yunxia Hu. Numerical solution of the regularized logarithmic Schrödinger equation on unbounded domains. Applied Numerical Mathematics, 140: 91-103, 2019.
2. Chenfei Zhang, Hongwei Li, Xiaoping Zhang, Lili Ju. Linear and unconditionally energy stable schemes for the multi-component two-phase diffuse interface model with Peng-Robinson equation of state. Communications in Computational Physics, 26: 1071-1097, 2019.
3. Hongwei Li, Lili Ju, Chenfei Zhang, Qiujin Peng. Unconditionally energy stable linear schemes for the diffuse interface model with Peng-Robinson equation of state. Journal of Scientific Computing, 75: 993-1015, 2018.
4. Hongwei Li, Yue Guo. Numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains. Physical Review E, 96, 063305, 2017.
5. Hongwei Li, Xiaonan Wu, Jiwei Zhang. Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains. Physical Review E, 90, 033309, 2014.
6. Hongwei Li, Xiaonan Wu, Jiwei Zhang. Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary. Computer Physics Communications, 185: 1606-1615, 2014.
7. Wei Zhang, Hongwei Li, Xiaonan Wu. Local absorbing boundary conditions for a linearized Korteweg-de Vries equation. Physical Review E, 89, 053305, 2014.
8. Herman Brunner, Hongwei Li, Xiaonan Wu. Numerical solution of blow-up problems for nonlinear wave equation on unbounded domain. Communications in Computational Physics, 14(3): 574-598, 2013.
9. Hongwei Li, Xiaonan Wu, Jiwei Zhang. Local absorbing boundary conditions for nonlinear wave equation on unbounded domain, Physical Review E, 84, 036707, 2011.