刘争光
职 称:副教授
办公室:长清湖校区文渊楼A254
邮 箱:liuzhg@sdnu.edu.cn
研究方向:相场模型数值方法、非局部模型快速算法
个人简介
刘争光,男,中共党员,1990年生,2013-2018年山东大学计算数学专业博士。2017-2018年国家公派博士生联合培养 (普渡大学)。近年来致力于非局部模型快速算法与相场模型的无条件能量稳定算法研究,获得一批应用基础性研究成果。在国际权威期刊“SIAM J Sci Comput”、“Math Comp”、 “J Comput Phys”、“Comput Methods Appl Mech Engrg”、“J Sci Comput”等发表SCI收录论文30余篇;主持中国自然科学青年基金,中国博士后科学基金第67批面上资助、山东省自然科学青年基金等。
研究兴趣
复杂相场模型数值模拟;非局部、分数阶模型快速算法
开设课程
高等数学1、高等数学2
科研项目
1. 国家自然科学青年基金:非局部相场模型的快速高阶能量稳定方法及算法优化研究(2021.01-2023.12),在研,主持;
2. 中国博士后科学基金第67批面上项目:复杂相场模型的高阶自适应优化算法研究(2020.07-2022.04),在研,主持;
3. 山东省自然科学青年基金:相场模型的能量稳定高阶自适应数值方法研究(2021.01-2023.12),在研,主持。
4. 湖南省重点实验室开放课题:非局部相场模型的快速算法研究(2019.12-2022.01),已结题,主持。
学术兼职
1. 美国《数学评论》评论员
2. 期刊《Science Journal of Applied Mathematics and Statistics》编委
3. 期刊《中国理论数学前沿》编委
代表性成果
在SIAM J Sci Comput、Math Comp、JCP,CMAME等计算数学顶级期刊发表论文30余篇。
1. Liu Z, Li X. The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM Journal on Scientific Computing, 2020, 42(3): B630-B655.
2. Liu Z, Li X. A highly efficient and accurate exponential semi-implicit scalar auxiliary variable (ESI-SAV) approach for dissipative system. Journal of Computational Physics, 2021, 447: 110703.
3. Li X, Shen J, Liu Z. New SAV-pressure correction methods for the Navier-Stokes equations: stability and error analysis. Mathematics of Computation, 2022, 91(333): 141-167.
4. Liu Z, Li X. A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation. Computer Methods in Applied Mechanics and Engineering, 2016, 308: 330-348.
5. Liu Z, Li X. Efficient modified techniques of invariant energy quadratization approach for gradient flows. Applied Mathematics Letters, 2019, 98: 206-214.
6. Liu Z, Li X. A fast finite difference method for a continuous static linear bond-based peridynamics model of mechanics. Journal of Scientific Computing, 2018, 74(2): 728-742.
7. Liu Z, Li X. Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numerical Algorithms, 2020, 85(1): 107-132.
8. Liu Z, Li X. Two fast and efficient linear semi-implicit approaches with unconditional energy stability for nonlocal phase field crystal equation. Applied Numerical Mathematics, 2020, 150: 491-506.
9. Liu Z, Li X. Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. Numerical Algorithms, 2022, 89(1): 65-86.
10. Liu Z, Li X. The fast scalar auxiliary variable approach with unconditional energy stability for nonlocal Cahn–Hilliard equation. Numerical Methods for Partial Differential Equations, 2021, 37(1): 244-261.
11. Liu Z, Li X, Huang J. Accurate and efficient algorithms with unconditional energy stability for the time fractional Cahn–Hilliard and Allen–Cahn equations. Numerical Methods for Partial Differential Equations, 2021, 37(3): 2613-2633.
12. Liu Z, Chen S. Novel linear decoupled and unconditionally energy stable numerical methods for the modified phase field crystal model. Applied Numerical Mathematics, 2021, 163: 1-14.
13. Liu Z. Novel energy stable schemes for Swift-Hohenberg model with quadratic-cubic nonlinearity based on the H− 1-gradient flow approach. Numerical Algorithms, 2021, 87(2): 633-650.
14. Liu Z, Cheng A, Wang H. An hp-Galerkin method with fast solution for linear peridynamic models in one dimension. Computers & Mathematics with Applications, 2017, 73(7): 1546-1565.
15. Liu Z, Cheng A, Li X. A second order Crank–Nicolson scheme for fractional Cattaneo equation based on new fractional derivative. Applied Mathematics and Computation, 2017, 311: 361-374.
16. Liu Z, Cheng A, Li X, et al. A fast solution technique for finite element discretization of the space–time fractional diffusion equation. Applied Numerical Mathematics, 2017, 119: 146-163.
17. Liu Z, Cheng A, Li X. A novel finite difference discrete scheme for the time fractional diffusion-wave equation. Applied Numerical Mathematics, 2018, 134: 17-30.
18. Liu Z, Cheng A, Li X. A fast discontinuous finite element discretization for the space-time fractional diffusion-wave equation. Numerical Methods for Partial Differential Equations, 2017, 33(6): 2043-2061.
19. Liu Z, Cheng A, Li X. A fast‐high order compact difference method for the fractional cable equation. Numerical Methods for Partial Differential Equations, 2018, 34(6): 2237-2266.
20. Liu Z, Li X, Zhang X. A fast high-order compact difference method for the fractal mobile/immobile transport equation. International Journal of Computer Mathematics, 2020, 97(9): 1860-1883.
21. Liu Z, Cheng A, Li X. A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative. International Journal of Computer Mathematics, 2018, 95(2): 396-411.
22. Liu Z, Li X. A Crank–Nicolson difference scheme for the time variable fractional mobile–immobile advection–dispersion equation. Journal of Applied Mathematics and Computing, 2018, 56(1): 391-410.
23. Liu Z, Li X. A novel equivalent definition of Caputo fractional derivative without singular kernel and superconvergent analysis. Journal of Mathematical Physics, 2018, 59(5): 051503.