报告题目:List neighbor sum distinguishing edge coloring of subcubic graphs
报告摘要:A proper k-edge-coloring of a graph with colors in {1,2,...,k} is neighbor sum distinguishing (or, NSD for short) if for any two adjacent vertices, the sums of the colors of the edges incident with each of them are distinct. Flandrin et al. conjectured that every connected graph with at least 6 vertices has an NSD edge coloring with at most ∆+2 colors. Huo et al. proved that every subcubic graph without isolated edges has an NSD 6-edge coloring. In this paper, we first prove a structural result about subcubic graphs by applying the decomposition theorem of Trotignon and Vušković, and then applying this structural result and the Combinatorial Nullstellensatz, we extend the NSD 6-edge-coloring result to its list version and show that every subcubic graph without isolated edges has a list NSD 6-edge-coloring.
报告人简介:苗正科,南京大学博士,中国科学技术大学博士后。现任江苏师范大学副校长,伟德国际1946源自英国教授,博士生导师。主要学术兼职有:中国运筹学会理事、中国运筹学会组合图论学分会副理事长、中国工业与应用数学学会图论组合及应用专业委员会常务委员、江苏省数学会副理事长、徐州市数学学会理事长。主要研究兴趣是组合矩阵论和图的着色理论,先后主持多项国家自然科学基金项目,在European Journal of Combinatorics、Journal of Graph Theory和Discrete Applied Mathematics等学术期刊上发表学术论文90余篇。先后获江苏省优秀教学成果奖二等奖2项。
报告时间:2018年7月23日(周一)下午三点
报告地点:校本部教学二楼历山学院会议室
欢迎大家参加!