报告题目: Improper (list) coloring of planar graphs
报告摘要:Let d1, d2,… dk be k non-negative integers. A graph G is (d1, d2,… dk)- colorable if there exists a mapping f : V (G)→{1,2,…,k} such that the sub-graph G[i] induced by color i has maximum degree at most di for i = 1,2,…,k.
Especially, if d1 = d2 = … = dk, then such kind of coloring is called a (d, d,…, d)-coloring. An (L,d)*-coloring is a mapping f that assigns a color f(v) ∈ L(v) to each vertex v ∈ V (G) so that at most d neighbors of v receive color f(v). A graph G is said to be (k, d)*-choosable if it admits an (L, d)*-coloring for every list assignment L with |L(v)|≥k for all v∈V (G).
In the first part of my talk, I will show some known results on improper coloring of (planar) graphs with some restrictions and present a short proof of our recent main result. In the second part, I will give a chief survey concerning on some progress of improper list coloring problem.
报告人:陈敏,博士,浙江师范大学副教授,于2010年在法国波尔多第一大学获得博士学位,并在同年荣获“国家优秀留学生奖学金”(在法留学生中,同年度数学专业仅此一人)。目前主要研究方向为图的染色理论。分别在《J. Combin. Theory Ser. B》、《European J. Combin.》、《J. Graph Theory》、《Discrete Appl. Math.》、《Discrete Math.》与《中国科学》等国内外学术刊物上发表30余篇SCI源期刊学术论文。目前主持国家自然科学基金面上项目1项目,主持国家自然科学基金青年基金1项,主持留学回国人员科研启动基金1项。作为主要成员,荣获浙江省科学技术奖二等奖1项和浙江省自然科学学术奖一等奖1项。现为浙江省高校中青年学科带头人、浙江师范大学优秀中青年骨干教师。
报告时间:2018年4月30日(周一)上午10:00-11:00
报告地点:长清校区B434报告厅
欢迎老师和同学参加!