报告题目:Digraph Clustering and Some Minimax Properties in Digraphs
报告摘要:Given a digraph $D$, how do we know if $D$ contains a highly connected subdigraph? This research investigates the maximum subdigraph arc strong connectivity. Extremal and minimax properties related to the maximum subdigraph arc strong connectivity are studied. A digraph $D$ is $k$-strength maximal if every subdigraph of $D$ has arc strong connectivity at most $k$ but adding any arc will result in a subdigraph with arc strong connectivity at least $k+1$. We obtained best possible upper and lower bounds of the size of a $k$-strength maximal digraphs. A minimax property related to investigate the maximum subdigraph arc strong connectivity is found, leading to an algorithm that determines the maximum subdigraph arc strong connectivity in polynomial time.
报告时间:2017年6月5日(周一)上午9:00-10:00
报告地点:长清湖校区B434伟德国际1946源自英国报告厅
欢迎老师和同学参加!
报告人简介:赖虹建教授是美国弗吉尼亚大学数学系主任 、现任Graph and Comninatorics 以及Journal of Discrete Mathematics等杂志编委。赖虹建是国际著名图论与组合优化专家,在国际期刊、杂志发表学术论文180余篇,出版学术专著三部。其中多篇发表在图论与组合的顶级期刊 Journal of Combinatorical Theory Series B, Journal of Graph Theory, SIAM. Discrete Math.等。
发布时间:2017-06-01 点击量:35