报告题目:The LDG methods for typical time-fractional partial differential equations
报 告 人:李常品获上海大学博士学位后留校任教,历任讲师、副教授、教授、博士生导师,其主要研究方向为分数阶偏微分方程数值解等。2018年入选交叉学科领域“全球高被引科学家”(Clarivate Analytics);在World Scientific编辑专著一部,在Chapman and Hall/CRC出版专著一部。他现任Applied Numerical Mathematics、Fractional Calculus and Applied Analysis、Journal of Nonlinear Science、Mathematics and Computers in Simulations等杂志编委,任德国德古意特系列丛书“应用科学和工程中的分数阶微积分”主编(Editor-in-chief and founding editor of the book series: Fractional Calculus in Applied Sciences and Engineering, De Gruyter, Germany)。两次获上海市自然科学奖(2010、2017)、上海市优秀博士学位论文指导教师(2016)、获分数阶微积分领域的黎曼-刘维尔理论文章奖(2012)、获宝钢优秀教师奖(2011)。
报告摘要:In this talk, we present the local discontinuous Galerkin (LDG) finite element methods for typical time-fractional partial differential equations (TFPDEs): reaction-diffusion equation, reaction-diffusion-wave equation, and cable equation, where the time fractional derivative is in the sense of Caputo. The existence, uniqueness, and regularity of solutions of the above equations are studied. The stability, convergence, and error estimates of the derived DG schemes are displayed. And the numerical examples are also included which support the theoretical analysis.
报告时间:2019年5月27日(周一)上午10:00
报告地点:长清湖校区文渊楼A231报告厅
欢迎各位老师参加!