报告题目:Approximate inversion for Abel integral operators of variable exponent and applications
报 告 人:郑祥成,山东大学
报告摘要:We investigate variable-exponent Abel integral equations and corresponding fractional Cauchy problems. We provide an inverse technique to convert the first-kind Volterra integral equation of variable exponent to a second-kind one. Based on this transformation, we carry out rigorous analysis to prove several theoretical results and their dependence on the variable exponent. In particular, we prove that the sensitive dependence of the well-posedness of classical Riemann-Liouville fractional differential equations on the initial value and the singularity of their solutions could be resolved by adjusting the variable exponent at the initial time, which demonstrates the advantages of introducing the variable exponent. The above findings suggest that the variable-exponent fractional problems may serve as a connection between integer-order and fractional models by adjusting the variable exponent.
报告人简介:郑祥成,山东大学研究员,主要从事非线性和非局部问题的分析与计算等方面的研究,近年在Science、SINUM、SISC等权威期刊发表论文多篇,担任近50种SCI期刊的审稿人,主持国家自然科学基金、国家重点研发计划子题等,入选CSIAM青年人才托举工程、山东省“泰山学者”青年专家等。
报告时间:2024年3月18日 10:00-11:00
报告地点:文渊楼B536
主办单位:伟德国际1946源自英国