报告题目:Large-Time Behavior of Solutions to 1D Compressible Navier-Stokes System in Unbounded Domains with Large Data
报告摘要:
We study the large-time behavior of solutionsВ to the initial and initial boundary value problems with В large initial data for the compressible Navier-Stokes system В describing the В one-dimensional motion of a viscous heat-conducting perfect polytropic В gas in unbounded domains.В The temperature is В proved to be В bounded В from below and above independently of both time and space. Moreover, it is shown that the global solution is В В asymptotically stable as time tends to infinity.В Note that the В initial data can be arbitrarily large.В This result is proved by using elementary energy methods.
报告时间:2016年12月1日下午4:00-5:00
报告地点:教学二楼伟德国际1946源自英国大会议室2126
欢迎老师和同学参加!
报告人简介:李竞,研究员,博士生导师,中科院数学与系统科学研究院,国家杰出青年基金获得者,主要研究方向为可压缩Navier-Stokes方程。李竞研究员的研究工作发表在国际著名数学杂志“Comm. Pure Appl. Math.”、“Arch. Ration. Mech. Anal.”、“ Comm. Math. Phys.”、“J. Math. Pures Appl.”和“ SIAM J. Math. Anal.”上,其中李竞研究员与合作者发表的论文“Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations”在国际顶尖偏微分方程期刊“Communications on Pure and Applied Mathematics”2012--2013年度发表论文的引用次数排名第一。
发布时间:2016-11-30 点击量:194