报告题目:Sparse Machine Learning in a Banach Space
报告人:许跃生 美国奥多明尼昂大学教授
报告摘要:We will report in this talk recent development of kernel based machine learning. We will first review a basic classical problem in machine learning - classification, from which we introduce kernel based machine learning methods. We will consider two fundamental problems in kernel based machine learning: representer theorems and kernel universality. We will then elaborate recent exciting advances in sparse learning. In particular, we will discuss the notion of reproducing kernel Banach spaces and learning in a Banach space.
报告人简介:许跃生教授现任美国奥多明尼昂大学教授,博士生导师。1989年在美国奥多明尼昂大学获得博士学位。曾任美国西弗吉尼亚大学Eberly讲席教授,雪城大学终身职正教授,中山大学国华讲席教授。现担任多个学术期刊编委。在剑桥大学出版社出版合著一部。 论文发表在Applied and Harmonic Computational Analysis, SIAM Journal on Numerical Analysis, Inverse Problems, SIAM Journal on Imaging Science, IEEE Transactions on Medical Imaging等国际著名期刊,共计一百八十余篇。在计算数学、应用数学和基础数学的多个领域都做出过重要学术贡献。
报告邀请人:科学与工程计算科研团队
报告时间:2020年10月26日 8:30-9:30
报告地点:ZOOM云会议
请安装Zoom后,点击链接 https://odu.zoom.us/j/94259812071
Meeting ID: 942 5981 2071