报告题目:Chord measures in Integral Geometry and their Minkowski Problems
报 告 人:席东盟,上海大学
报告摘要:The new family of geometric measures, called chord measures, arises from the study of integral geometric invariants of convex bodies. The Minkowski problems for the new measures are proposed and attacked.
When the given ‘data’ is sufficiently regular, these problems are a new type of fully nonlinear partial differential equations involving dual quermassintegrals of functions, and include one of Christoffel-Minkowski Problem as a critical case. Major cases of these Minkowski problems are solved without regularity assumption. This is joint work with Erwin Lutwak, Deane Yang, and Gaoyong Zhang.
报告人简介:席东盟,上海大学理学院数学系副教授。主要研究方向为几何分析中的凸体理论。在JDG、Adv. Math、Trans. Amer. Math. Soc.、J. Geom. Anal.、JFA等数学顶级期刊上发表文章。2015年于上海大学获理学博士学位,师从冷岗松教授。2014-2015年于美国纽约大学,联合培养博士,师从Lutwak, Yang, and Zhang (张高勇)。曾获2017年国际华人数学家大会最佳论文奖若琳奖(ICCM Best Paper Award);2018年受邀于德国Oberwolfach数学所做会议报告。
报告时间:2022年11月3日 14:00-16:00
报告地点:腾讯会议ID:530-348-325
主办单位:伟德国际1946源自英国