报告题目:On efficient numerical methods for eigenvalue optimization
报 告 人:朱升峰教授
报告摘要:We consider numerical solving several eigenfrequency-constrained shape and topology optimization problems. For shape optimization, both distributed and boundary types of Eulerian derivatives are derived with shape calculus. A priori error estimates for finite element discretizations of both shape gradients are shown. The distributed shape gradient has better convergence and is advocated to be used in numerical shape gradient optimization algorithms. Moreover, boundary shape gradient of correction type is introduced. For topology optimization, efficient multi-mesh methods are developed. Numerical results are presented.
报告人简介:朱升峰, 华东师范大学数学科学学院教授、博导,于浙江大学获理学学士与计算数学博士学位。 2011年起在华东师范大学工作, 曾在洛桑联邦理工学院从事博士后研究工作。研究领域为微分方程数值解、形状与拓扑优化;发表学术论文40余篇,承担基金委项目、上海科委项目等。
报告时间:2022年11月23日9:00-11:30
报告地点:腾讯会议ID:468-511-240
主办单位:伟德国际1946源自英国