报告题目:Legendrian mean curvature flow in $\eta$-Einstein Sasakian manifolds
报 告 人:韩英波,信阳师范学院教授
报告摘要:Recently, there are a great deal of work done which connects the Legendrian isotopic problem with contact invariants. The isotopic problem of Legendre curve in a contact 3-manifold was studies via the Legendrian curve shortening flow which was introduced and studied by K. Smoczyk. On the other hand, in the SYZ Conjecture, one can model a special Lagrangian singularity locally as the special Lagrangian cones in C^3 . This can be characterized by its link which is a minimal Legendrian surface in the 5-sphere. Then in these points of view, in this talk we will focus on the existence of the long-time solution and asymptotic convergnce along the Legendrian mean curvature flow in higher dimensional $\eta $-Einstein Sasakian (2n + 1)-manifolds under the suitable stability condition due to the Thomas-Yau conjecture. This is a joint work with Shu-Cheng Chang and Chin-Tung Wu.
报告人简介:韩英波,博士,信阳师范学院教授。2007年7月于复旦大学数学科学学院获理学博士学位,2007.07-2009.12于东南大学数学系工作,2009年12月调入信阳师范学院伟德国际1946源自英国工作至今, 2016.12-2017.12于美国俄克拉荷马大学数学系学术访问。主要从事微分几何研究。主持在研国家自然科学基金面上项目1项,主持完成2项国家自然科学基金项目。在国内外重要学术期刊The Journal of Geometric Analysis, International Mathematical Research Notices, Calculus of Variations and Partial Differential Equations, Canadian Journal of Mathematics等发表学术论文50余篇。
报告时间:2023年4月20日 14:30-16:30
报告地点:腾讯会议ID:966-947-903
主办单位:伟德国际1946源自英国