报告题目:Minimum Degree Stability of Graphs Forbidding Some Odd Cycles
报 告 人:彭岳建 ,湖南大学
报告摘要:We determine what the tight bound on the minimum degree would be to guarantee an n-vertex graph forbidding a family of odd cycles to be bipartite. Let C be a family of odd cycles. We discover that the length of the shortest odd cycle not in C and the length of the longest odd cycle in C determine what the tight bound is. Our result is also related to the question of Erd˝os and Simonovits: For an integer r ≥ 2 and a family of non-bipartite graphs H, what is the tight bound of α such that any H-free n-vertex graph with minimum degree at least αn has chromatic number at most r? Our result answers this question for r = 2 and any family of odd cycles. This is a joint work with Xiaoli Yuan.
报告人简介:彭岳建,湖南大学教授、博士生导师。2001年于美国埃默里大学(Emory University)获得理学博士学位。2002-2012年在美国印第安纳州立大学(Indiana State University)历任助理教授、副教授、教授(终身)。2012年作为“湖南省百人计划”特聘教授回到湖南大学。彭岳建教授的主要研究方向是极值组合与图论,在国际组合图论权威刊物JCTB、JCTA、JGT等发表论文40多篇。目前主持国家自然科学基金重点项目一项。
报告时间:2023年6月17日 9:00-10:00
报告地点:文渊楼A231
主办单位:伟德国际1946源自英国