报告题目:Regularity of the chord log-Minkowski problem
报 告 人:鲁建,华南师范大学
报告摘要:The chord log-Minkowski problem arises from integral geometry, which was initially proposed by Lutwak-Xi-Yang-Zhang recently. In the smooth case, it is equivalent to solving a type of nonlocal Monge-Ampere equation on the unit hypersphere. Actually, it involves a Riesz potential defined on a bounded domain. We will mainly talk about a new result on the regularity of solutions to the chord log-Minkowski problem, which is based on a joint work with Jinrong Hu and Yong Huang.
报告人简介:鲁建,2013年在清华大学获博士学位,现为华南师范大学研究员。研究方向主要为偏微分方程,特别是Monge-Ampere型方程及其在几何中的应用。在数学学术期刊 Adv. Math., Calc. Var. PDE, J. Funct. Anal., Trans. AMS,等主流期刊上发表研究论文十余篇。主持国家自然科学基金优秀青年科学基金项目、面上项目等课题。
报告时间:2023年10月16日 10:00-11:30
报告地点:文渊楼 B119
主办单位:伟德国际1946源自英国