报告题目:Subspace concentration of mixed volume measures and sharp affine isoperimetric inequalities
报 告 人:熊革,同济大学
报告摘要:The notion of mixed volume measure of compact convex sets in was recently put forward, which is the localization of the classic Minkowski mixed volume V () and the generalization of the important cone-volume measure . When are zonotopes and is a convex body or are zonoids in, the subspace concentration of is proved in this paper. As applications, a new subspace concentration phenomenon of quermassintegrals is revealed, and several new sharp Minkowski mixed volume inequalities are established. This talk is based on the joint work with SUN Qiang.
报告人简介:熊革,同济大学教授,博士生导师。研究领域是凸体几何。熊革教授解决了凸体几何中的几个公开问题。包括Lutwak-Yang-Zhang关于锥体积泛函极值问题的2, 3维情形;由截面确定凸体的Baker-Larman问题的2维情形。他与学生最早提出、并解决了Lp静电容量的Minkowski 问题;完全解决了纽约大学G. Zhang教授关于凸体的John 椭球与对偶惯性椭球一致性的问题。熊革教授在国际纯数学的重要期刊JDG, AIM, IUMJ, IMRN, CVPDE, JFA,CAG, Israel Journal of Mathematics, Discrete and Computational Geometry等上发表论文30余篇。他的多个研究成果被写入凸体几何的经典教材《Geometric Tomography》和《Convex Bodies: the Brunn-Minkowski theory》之中。
报告时间:2023年10月27日10:00
报告地点:文渊楼B408
主办单位:伟德国际1946源自英国